Public Data Resource

Degradation Measurement of Robot Arm Position Accuracy

Visit Home Page
Contact: Helen Qiao..
Identifier: doi:10.18434/M31962
Version: 1.0
The dataset contains both the robot's high-level tool center position (TCP) health data and controller-level components' information (i.e., joint positions, velocities, currents, temperatures, currents). The datasets can be used by users (e.g., software developers, data scientists) who work on robot health management (including accuracy) but have limited or no access to robots that can capture real data. The datasets can support the:

- Development of robot health monitoring algorithms and tools - Research of technologies and tools to support robot monitoring, diagnostics, prognostics, and health management (collectively called PHM) - Validation and verification of the industrial PHM implementation. For example, the verification of a robot's TCP accuracy after the work cell has been reconfigured, or whenever a manufacturer wants to determine if the robot arm has experienced a degradation.

For data collection, a trajectory is programmed for the Universal Robot (UR5) approaching and stopping at randomly-selected locations in its workspace. The robot moves along this preprogrammed trajectory during different conditions of temperature, payload, and speed. The TCP (x,y,z) of the robot are measured by a 7-D measurement system developed at NIST. Differences are calculated between the measured positions from the 7-D measurement system and the nominal positions calculated by the nominal robot kinematic parameters. The results are recorded within the dataset. Controller level sensing data are also collected from each joint (direct output from the controller of the UR5), to understand the influences of position degradation from temperature, payload, and speed. Controller-level data can be used for the root cause analysis of the robot performance degradation, by providing joint positions, velocities, currents, accelerations, torques, and temperatures. For example, the cold-start temperatures of the six joints were approximately 25 degrees Celsius. After two hours of operation, the joint temperatures increased to approximately 35 degrees Celsius. Control variables are listed in the header file in the data set (UR5TestResult_header.xlsx).

If you'd like to comment on this data and/or offer recommendations on future datasets, please email guixiu.qiao@nist.gov.
Research Areas
Keywords: ManufacturingRobotics in manufacturingSensing and perceptionaccuracy degradationPHM
These data are public.
For more information, please visit the home page.
Version: 1.0
Cite this dataset
Helen Qiao (2018), Degradation Measurement of Robot Arm Position Accuracy, National Institute of Standards and Technology, https://doi.org/10.18434/M31962 (Accessed 2025-01-14)
Repository Metadata
Machine-readable descriptions of this dataset are available in the following formats:
NERDm
Access Metrics
Metrics data is not available for all datasets, including this one. This may be because the data is served via servers external to this repository.